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Risk representations

Abstract

The perception of risks (e.g., diseases, accidents, natural hazards) is investigated

using a multi-task, multi-model approach. We studied the proximities among 18

risks induced by three tasks: judgment of similarity, conditional prediction and

dimensional evaluation. The comparative judgments (similarity and prediction)

were reasonably close but the dimensional evaluation did not correlate highly

with either similarity or prediction. Similarity judgments and conditional predic-

tions appear to be represented best by tree models, which are based on discrete

features, while the dimensional evaluations are better explained by spatial

models, such as multidimensional scaling and factor analysis. We discuss the

implications of these results for the study of mental representations and for the

analysis of risk perception.
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Much work in Cognitive Psychology is aimed at the construction of a for-

mal representation of some domain of knowledge or behavior. These representa-

tions are commonly constructed on the basis of observed data using some

appropriate statistical, geometric or computer model. At the current state of

knowledge, formal representations of psychological structures are inevitably

incomplete because the data usually reflect only limited aspects of the process

under study and because the assumptions that underlie the representations are,

at best, approximate. The use of reaction time, error rate or verbal protocols, for

example, provide only a limited view of human reasoning. Analogously, the use

of hierarchical clustering or multidimensional scaling to represent some semantic

domain may exclude significant aspects of the data or impose extraneous features

that are not present in the data. Although there are no general methods for

avoiding errors of omission or commission, caused by the selection of tasks and

models, these errors may sometimes be reduced by the use of a multi-task,

multi-model approach that investigates the same psychological structure using

different tasks and different representations. In this paper we apply this

approach to the study of the perceived relations among risks.

As individuals and as a society we are constantly required to compare,

evaluate and manage risks. Individuals control their smoking, dietary and driv-

ing habits; society imposes speed limits and regulates food additives, drugs and

pollutants. Since the regulation and management of many risks (e.g., nuclear

power, genetic engineering) are subject to an intense public debate, the
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perceptions of these risks are of considerable interest for public policy, as well as

for cognitive psychology. Indeed, the question of how people perceive and cope

with risk has captured the attention of both natural and social scientists (e.g.,

Fischhoff, Slovic, Lichtenstein, Reed & Combs, 1978; Fischhoff, Lichtenstein, Slo-

vic, Derby & Keeney, 1981; Johnson & Tversky, 1983; Hohenemser, Kates & Slo-

vic, 1983; Slovic, Fischhoff & Lichtenstein, 1980, 1981, 1983; Rowe, 1977;

Schwing & Albers, 1980; Starr, 1969; von Winterfeldt, John & Borcherding,

1981). A significant part of this research has been devoted to the construction of

multivariate representations of risks based upon the judgments of experts and lay

people.

The present study investigates the perceived relations among prevalent

causes of death using three different types of data: judgments of similarity, con-

ditional predictions and ratings of risks on evaluative dimensions. These data,

which give rise to different measures of proximity between the risks, are used to

compare three classes of representations: hierarchical and non-hierarchical trees,

ordinal multidimensional scaling and principal component factor analysis. An

outline of the study is presented in Figure 1.

Insert Figure 1 about here

METHOD
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Risks. The items used in this study were generated by 68 undergraduates

from Stanford University who were asked to list the major risks which are pri-

mary causes of death in the U.S.in our time. The risks listed by the subjects

were ranked by their frequency of mention and by the estimated number of fatal-

ities they cause, and the 18 risks with the highest average rank were selected for

study. This set included: Accidental falls, Flood, Tornado, Lightning, Electrocu-

tion, Fire, Nuclear accident, Toxic chemical spill, Homicide, Terrorism, War, Air-

plane accidents, Traffic accidents, Stroke, Heart disease, Lung cancer, Leukemia,

Stomach cancer.

Tasks. Three tasks were used in the study:

(I) Judgment of Similarity. Subjects were presented with all pairs of risks

and asked to rate each pair on a scale from 1 (very dissimilar) to 9 (very similar).

The order of risks within pairs was counterbalanced and the order of the pairs

was randomized.

(2) Conditional Prediction. Prior to this task all subjects estimated the

number of people in the U.S. that die each year from each one of the 18 risks.

Afterwards they were given the following instructions. "Suppose you were to

learn that many more people die each year in the U.S. from - than you

had estimated. Please indicate whether or not you would increase your estimate

for each of the following causes of death, given this new information." Thus, the

subjects were asked to judge which of the risk estimates should be increased,
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assuming the target risk had been underestimated. The order of the target risks

was randomized and the judged risks were presented alphabetically.

(3) Dimensional Evaluation. Following the procedure investigated by

Fischhoff et al. (1978), each risk was evaluated using a 7 point rating scale, on

nine dimensions, which have emerged from an analysis of the acceptability of risk

(e.g., Lowrance, 1976). The nine dimensions are presented in Table 1. The risks

were presented alphabetically and the order of the scales was randomized.

Insert Table I about here

Design. A total of 245 subjects, were recruited through an advertisement

placed in the University of Oregon newspaper. Each subject was randomly

assigned to one of six groups, of roughly equal size, which completed a subset of

the experimental tasks. The 153 similarity judgments ((18 x 17)/2) and the 306

conditional predictions (18 x 17) were randomly divided into three equal groups;

the 162 dimensional evaluations (9 scales x 18 risks) were divided into four

groups. Three groups of subjects each completed one third of the similarity judg-

ments and rated the risks on two of the scales. A fourth group rated the risks on

the three remaining scales and performed one third of the conditional predictions.

The two remaining groups each performed a third of the conditional predictions.

Subjects participated in a number of unrelated experimental tasks and received 6

dollars for approximately one and one-half hours of their time.



Table 1: Dimensional Evaluation Scales
(after Fischhoff et al., 1978)

Not known to science

To what extent are the risks known to science?

Not known to exposed

To what extent are the risks known precisely by the persons who are
exposed to those risks?

Newl Unfamiliar

Is this risk new and novel or old and familiar?

Effect Delayed

To what extent is the risk of death immediate-or is death likely to occur
at a later time?

Involuntary

Do people become exposed to this risk voluntarily?

Not controllable

If you are exposed to the risk, to what extent can you, by personal skill or
diligence, avoid death?

Certainly Fatal

When the risk from the activity is realized in the form of a mishap or ill-
ness, how likely is it that the consequence will be fatal?

Dread

* Is this a risk that people have learned to live with and can think about
reasonably calmly, or is it one that people have great dread for-on the level of a
gut reaction?

Catastrophic

Is this a risk that kills people one at a time (chronic risk) or a risk that
kills large numbers of ppople at once (catastrophic risk)?
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TASK ANALYSIS

Each of the three tasks employed in the present study (similarity judg-

ment, conditional prediction and dimensional evaluation) induces a proximity

relation among the risks. Similarity judgments are perhaps the simplest and

most direct method of assessing the proximity of stimuli. Conditional prediction

can be viewed as a judgment of covariation: the proximity between risks can be

measured by the extent to which an increase in one risk produces an increase in

the estimate of another. To derive a measure of proximity from the dimensional

evaluation task, we can compute the correlation between (.he risk profiles across

the nine scales.

Although all three tasks provide judgmental data about the proximity

between risks, the tasks differ from each other in several important respects.

First, similarity judgments and conditional predictions are both comparative; the

subject compares two risks and assesses either their likeness or their covariation.

In contrast, the dimensional evaluation task is non-comparative: the subject

evaluates each risk separately without making explicit comparisons to other risks.

Second, the dimensional evaluation measure is compositional in the sense that

overall proximity between risks is defined by the correlation between their rat-

ings. Judgments of similarity and conditional predictions are holistic in the sense

that the subjects are free to identify, weigh and combine features as they see fit.

Similarity, however, is based on a subjective criterion of correspondence, while

prediction is based on an objective standard--.he number of fatalities. Thus, the
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evaluation task restricts judgment to a fixed set of global dimensions, combining

them according to a well-defined rule, while the comparative tasks do not con-

strain either the set of attributes or the composition rule.

This analysis suggests that the three tasks may tap different aspects of

people's knowledge about risk and give rise to distinct proximity relations that

call for different formal representations. More specifically, risks can be compared

in terms of a few global dimensions or they can be compared in terms of specific

or local features. In the former mode of comparison, all risks are judged relative

to the same attributes, while in the latter the set of relevant features may vary

from one comparison to another. For example, all risks can be evaluated in

terms of the immediacy of the effect or the severity of the consequences. On the

otber hand, a feature such as radiation is probably considered in the comparison

of nuclear accidents and leukemia but not in the comparison of tornado and

flood. Because the evaluation task is defined in terms of global dimensions we

might expect spatial models such as multidimensional scaling and factor analysis,

to fit the evaluation data better than the similarity and the prediction data. On

the other hand, if people compare risks in terms of their common and distinctive

features (Tversky, 1977), we might expect discrete feature models to fit the simi-

larity and the prediction data better than the dimensional evaluation data.

The preceding discussion also suggests the hypothesis that judgments of

similarity and conditional predictions, which are based on the comparison of

pairs, will correlate higher with each other than with the evaluation task, which
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does not involve a direct comparison of risks. Thus, we expect that the nature of

the task will determine, in part at least, the compatibility among the data sets

and the correspondence between data and models. These hypotheses are investi-

gated in the following section.

RESULTS

Compatibility Among Proximities

Preliminary Analysis. Data from the three tasks were used to construct

three sets of proximities between all pairs of risks. For the similarity data, we

simply averaged rated similarity across subjects. For conditional predictions, we

defined a (symmetric) measure of proximity between risks by [P(xly) + P(ylx)]/2

where P(xly) is the percentage of subjects who wished to increase their estimate

of risk x when told they had underestimated risk y. For the dimensional evalua-

tion data, we first averaged the subjects' ratings for each of the 18 risks and

defined the proximity between risks by their product-moment correlation across

the nine scales. As an alternative definition of the proximity between risk

profiles we also computed the Euclidean distance between every pair of profiles.

Since the two measures yielded similar results, we report only the correlational

data. The proximities derived from the similarity and the prediction data are

presented in Appendix A and the mean ratings of the 18 risks on each scale are

presented in Appendix B.
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To assess the reliability of the data, we constructed two proximity

matrices for each task, based upon a random partition of the subjects into two

equal groups. The split-half correlations between the matrices were .00, .91, and

.87 for the similarity, prediction and evaluation data, respectively.

Correlation Between Tasks. We computed the product-moment correla-

tions between the proximities induced by each task. In accord with the previous

analysis, the agreement between the two comparative tasks, similarity and pred-

iction, was fairly high, .76, but their agreement with the (non-comparative)

evaluation task was rather low: .36 for similarity and .42 for prediction. Note

that in the present design judgments of similarity and conditional predictions

were made by different groups of subjects hence the substantial correlation

between the responses cannot be attributed to the effect of one task on another.

However, the relatively low correlations of evaluation with similarity and predic-

tion may be due to a non-linear relation between the variables. To investigate

this possibility, we computed the monotone correlations between the tasks based

on the best fitting monotone regression (see, e.g., Kruskal & Wish, 1078).

Because this measure is not perfectly symmetric in the two variables, the average

of the two coefficients is reported. The non-linear regressions did not change the

pattern of results: the correlation between similarity at prediction was .80

whereas evaluation correlated .47 with similarity and .59 with prediction.
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Another possible explanation attributes the low correlations to the equal

weights assigned to the nine risk dimensions in the calculation of the correlations

between the risk profiles. To address this issue, we have used multiple regression

to estimate the weights of the nine risk dimensions so as to maximize the

correspondence between the observed similarity of a pair of risks and the

product-moment correlation between their weighted profiles. That is, we

estimated weights, wI,...W 9, associated with the nine risk dimensions so that the

similarity of risks X and Y is as close as possible (in the least-square sense) to

Ewixiyi, where Xi and yi denote the ratings of risks X and Y on dimension i, in

standard scores. The differential weighting of the dimensions had a surprisingly

small effect: the correlation between evaluation and similarity was .41 and the

correlation between evaluation and prediction was .50. The relatively low agree-

ment between the comparative and the non-comparative tasks therefore cannot

be adequately explained by non-linear regressions or by the weighting of the nine

scales.

Figure 2 plots, for each pair of risks, their correlation derived from the

evaluation data, against their judged similarity. The figure reveals skewed mar-

ginal distributions and a triangular joint distribution: highly similar risks are

associated with high correlations but dissimilar risks give rise to a wide range of

correlations. If we partition the joint distribution at the respective means (indi-

cated by broken lines in Figure 2) we find about twice as many data points in the

low-similarity high-correlation cell than in the high-similarity low-correlation cell.



Risk representations
11

The scatter plot of the predictions against the correlations exhibits a similar pat-

tern, but the joint distribution of similarities and predictions reveals a fairly

linear regression.

Insert Figure 2 about here

Rank Agreement. To examine more closely the discrepancies between the

measures, we plot in Figure 3, the proximity order of the risks induced by the

different tasks. More specifically, we selected one risk (e.g. homicide) as a refer-

ence, and ranked the remaining 17 risks by their proximity to the reference risk.

Each point in Figure 3 represents the proximity rank of a particular risk, relative

to the reference, in two tasks.

Insert Figure 3 about here

Figure 3A shows that evaluation and similarity induce nearly opposite

ranking of risks as evinced by the negative correlation between them. When

homicide is the reference risk, lightning is its nearest neighbor in the evaluation

data, but very distant in the similarity data. In the evaluation data, homicide

correlates highly with hazards such as electrocution and lightning; it also corre-

lates highly with the diseases presumably because they are all involuntary, com-

mon and tend to claim one life at a time. The similarity ordering reveals a very

different pattern: homicide is judged to be most similar to other acts of violence

4
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(war, terrorism) as well as to other risks involving human agents (nuclear and

traffic accidents). The diseases, which are not caused by a human agent, are

least similar to homicide. These inversions of order are responsible for the nega-

tive rank- correlation (- .68) between the two measures in Figure 3A. Although

the effect is less dramatic for other reference risks, it is evident that judgment of

similarity and dimensional evaluation capture different aspects of risk perception.

Figure 313 displays the relation between similarity and prediction, again

using homicide- as a reference risk. In both tasks homicide is close to the other

violent acts and distant from the diseases, and the rank correlation between the

measures (.71) is substantial, albeit far from perfect. Figure 3C displays the rela-

tion between prediction and evaluation, using lung Cancer as a reference risk.

The figure shows that the diseases are closest to lung cancer in both orderings

but there are substantial and interpretable discrepancies between them. Nuclear

accident and toxic chemical spill, which are potential causes of lung cancer, are

fairly close to lung cancer in the prediction data and furthest away from it in the

evaluation data. This observation suggests that causal considerations loom larger

in prediction than in evaluation.

Correspondence Between Data and Model.

Three types of representations are investigated in this paper: Principal

component factor analysis (with two and three factors); Ordinal multi-

dimensional scaling (in two and three dimensions); Hierarchical and non-
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hierarchical tree models. Two versions of each class of models were applied to

the data yielding a total of six representations for each of the three data sets.

We first display and discuss the different representations and then describe how

well they fit the various data sets.

Insert Figure 4 about here

Tree models. Figure 4 displays the additive tree (ADDTREE, Sattath &

Tversky, 1977) constructed for the prediction data. In this representation the

risks are the terminal nodes of the tree, and the distance between risks is given

by the length of the horizontal part of the path that joins them; the vertical part

is included for graphical convenience. A tree representation can be viewed as a

hierarchy of clusters; it can also be interpreted in terms of common and unique

features. Under the latter interpretation, each (horizontal) segment of the tree

corresponds to the measure of the set of features that belong to the objects ori-

ginating from that segment and to them alone (Tversky, 1977; Tversky & Sat-

tath, 1979). In particular, the terminal segments represent the unique features of

each risk and higher order segments represent the features shared by the risks of

the corresponding cluster. Figure 4 exhibits a highly distinct and readily inter-

pretable hierarchy of clusters, which are labeled: hazards, accidents, violent acts,

technological disasters and diseases.
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Insert Figure 5 about here

As will be shown later, the additive tree model of Figure 4 fits the predic-

tion data quite well. Nevertheless, the results indicate that the clustering of the

risks is not entirely hierarchical and there is some evidence for overlapping clus-

ters. This tendency can be observed in the extended tree (EXTREE, Corter &

Tversky, Reference Note 1) representation of these data presented in Figure 5.

As in the simple additive tree, each (non-terminal) segment defines a cluster that

consists of all risks that originate from that segment. An extended tree, however,

also includes marked segments, denoted by capital letters. Each marked segment

(e.g., X) defines a unique cluster consisting of the risks that include this segment

(e.g., War, Nuclear Accident, Toxic Chemical Spill); but this cluster overlaps

with the natural clusters of the tree. As in the additive tree, the distance

between risks is the measure of their distinctive features, which equals to the

(horizontal) length of the path that joins them. In the extended tree, however,

the path length excludes any marked segment that appears twice since it

represents a common, not a distinctive feature. For example, the distance

between War and Nuclear Accident in Figure 5 is given by the horizontal length

of the path that joins them excluding the marked segment X that corresponds to

features shared by War and Nuclear Acciden'. The (overlapping) clusters defined

by the marked segments are listed in Figure 5. For discussion of the extended

tree model and the scaling method see Corter and Tversky (Reference Note 1).



iinnuir -, Electrocution

HHHHHHHHH Lightning
0000000000 - Fire

HHHHHHHHI Tornado

Flood

imminz Accidental Falls

Traffic Accidents

00000000 Airplane Accidents

EEEEEEEEEE Homicide

I DODDDOODDEEEEEEEEEE Terrorism
|000000004

XXXXXXXXX War

xxxxxxxxx r Nuclear Accident
Toxic Chemical Spill

Leukemia

ccccccccccc- Lung Cancer

Stomach Cancer

CCCCCCCCCcc- Heart Disease

Stroke

I: Electrocution, Accidental Falls.
H: Lightning, Fire, Flood, Tornado.
D: Fire, Terrorism.
0: Airplane Accidents, Terrorism, War.
E: Homicide, Terrorism.
X, War, Nuclear Accident, Toxic Chemical Spill.
C: Leukemia, Lung Cancer, Stomach Cancer, Heart Disease,

Figure 5. Extended tree (EXTREE) representation of the prediction data.
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The extended tree of Figure 5 reproduces the major hierarchical clusters

that appear in the additive tree of Figure 4. The marked segments, however,

introduces a few additional overlapping clusters. For example, the segment H

combines Lightning (which is initially joined by Electrocution) with the other

natural hazards (Fire, Flood and Tornado). And the segment 0 clusters Airplane

Accidents (which are originally joined by Traffic Accidents) with War and Terror-

ism.

Insert Figure 6 about here

Multidimensional Scaling. Figure 6 presents the two-dimensional

Euclidean solution for the correlations derived from the evaluatinn data. This

representation was constructed using the KYST program (Kruskal, Seery and

Young, Reference Note 2) which embeds the risks as points in the plane so that

the ordering of the interpoint distances approximates the ordering of their prox-

imities. To facilitate the interpretation of the dimensions we have regressed each

Of the rating scales against the coordinates of the two-dimensional solution. Five

of the nine scales, whose correlation with the solution exceeds .7, are superim-

posed on the two-dimensional representation (see Kruskal & Wish, 197-5, for a

description of this procedure). The results suggest two nearly orthogonal dimen-

sions, which roughly correspond to the scales of newness and catastrophic poten-

tial. Figure 7 presents a composite representation of the similarity data. The



Toxic
Chemical

espill Nuclear
*Accid ent

STerrorism

0 C

M q Airplane
A~ %.U Accidents

War
Leukemia

Stomach Homicide
CanceT *CATASTROPHIC

0Lightning Tornados
Lung Stroke *Flood
Cancer 0

0
Heart
Disease Electrocution

Fire

Accidental Traffic
FallsAccidents

Figure 6. Multidimensional Scaling (KYST) representation of the evaluation
data.
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points are arranged in the plane according to the two dimensional KYST solution

and the contours describe the clusters obtained by the ADDTREE solution of the

same data (see Fillenbaum & Rapoport, 1971; Shepard, 1980).

Insert Figures 7 and 8 about here

Factor Analysis. The factor analytic representation of the intercorrela-

tions between risks, based on the dimensional evaluation data, is presented in

Figure 8. The figure displays the loading of each risk on the first and the second

factors extracted by a principal component factor analysis (Rummel, 1970). As

in multidimensional scaling, the risks appear as points in the plane, but here the

proximity between points is expressed by their angle rather than by their

Euclidean distance. The two scales with the highest correlations with the data

are superimposed on the solution (as in Figure 6) to facilitate the interpretation

of the factors.

Goodness of Fit. To compare the solutions to the data, two measures of

goodness of fit, r2L and r2M were used. r2L is the squared product moment

correlation between the solution and the data or the proportion of linear variance

accounted for by the solution. r2M is the proportion of variance explained by

monotone rather than linear regression of the data against the solution. The

values of r2L and r2M for all six solutions and t! ree data sets are displayed in

Tabic - ,o interpret the results note that the two-dimensional models are com-
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Figure 8. Factor analytic representation of the evaluation data.
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parable to the additive tree in terms of the numbers of free parameters, 2n,

where n is the number of objects. The three-dimensional models employ more

free parameters (3n) than used in the extended trees, where the number of

marked segments was bounded by n/2.

A comparison of the columns of Table 2 indicate that, according to both

linear and monotone measures, similarity and prediction are better described by

trees than by multidimensional scaling or factor analysis. In contrast, the evalua-

tion data is better described by multidimensional scaling than by trees or factor

analysis, which yield comparable fit. A comparison of the rows of Table 2 indi-

cate that trees explain prediction better than similarity and evaluation whereas

multidimensional scaling and factor analysis explain evaluation better than simi-

larity and prediction. These observations support the hypothesis that trees, or

discrete clustering methods, are particularly suited for the representation of simi-

larity and prediction while multidimensional scaling is more appropriate for

representing the correlation between profiles. The factor analytic model, which

has been commonly applied to the study of risk, appear less successful than either

trees or multidimensional scaling.

Insert Table 2 about here

Diagnostic Properties. In addition to the subjective criterion of interpreta-

bility and the traditional criteria of goodness-of-fit presented in Table 2, which



Table 2. Percentage of Linear and Monotone Variance

Accounted for by the Various Solutions

Tree MDS Factor Analysis

Data Index

Addtree Extree 2 dim. 3 dim. 2 factor 3 factor

Linear. 74 83 56 64 43 67

Similarity

Monotone 83 85 71 81 58 73

Linear 89 94 70 85 64 83

Prediction

Monotone 92 96 89 94 74 89

Linear 77 84 91 96 74 93

Evaluation

Monotone 83 87 94 99 80 95
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reflect the global correspondence between the solution and the data, it is often

instructive to compare alternative representations on the basis of more specific

diagnostic properties. Recent work on the representation of proximities has

identified several properties of data that can help diagnose whether the data are

better described by a tree or by a space. Analytic results (Sattath & Tversky,

1977) and simulations (Pruzansky, Tversky & Carroll, 1982) indicate that trees

tend to produce many large distances (between objects from different branches)

and fewer short distances (between objects from the same branch). In contrast,

spatial models tend to produce more short distances and fewer large distances.

As a consequence, trees typically produce negatively skewed distributions of dis-

tances while the distribution of the distances between, say, uniformly distributed

points in the plane is positively skewed.

Another property that reflects the degree of clustering is based on the

comparison of the distances between any three objects. The distances between

any three objects can be viewed as a triangle with a long (L), a middle (M) and a

short (S) side. Such a triangle is called elongated if the middle side is c0or in

length to the long than to the short side, or L-M<M-S. Because a tree generally

contains more inter-cluster distances than intracluster distances, it is expected to

yield a higher percentage of elongated triangles than uniform configuration of

points in the plane (Pruzansky et. al., 1982).
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The percentage of elongated triangles and the skewness of the distribution

of distances (defined by the third central moment divided by the cubed standard

deviation) were computed for each of the three data sets. The results agree with

the preceding conclusions regarding the appropriateness of spatial versus tree

models for different types of data. The similarity and the prediction data exhi-

bited considerable negative skewness (-1.22 and -1.36, respectively) and a sub-

stantial percentage of elongated triangles (71% and 73%, respectively). In con-

trast, the distribution of proximities derived from the evaluation data is posi-

tively skewed (.133) and has a lower percentage (64%) of elongated triangles.

TE-e differences between evaluation and the other two tasks may be due to

the nature of the task (dimensional evaluation vs. pair comparison) or to the pro-

cedures used to extract a proximity measure from the risk profiles. To separate

these factors we computed for each pair of risks the correlation between the

respective rows in the similarity matrix. 1 The resulting coefficient may be viewed

as an indirect measure of proximity that reflects the degree to which the two

risks induce the same pattern of similarities over the remaining 16 tasks. It is

based on judgments of similarity, but it is computed by an aggregate correla-

tional method. The same procedure was applied to the prediction data.

As might be expected, the correlations between the direct and the indirect

measures of similarity and prediction are not high: .40 for similarity and .69 for

prediction. The respective monotone coefficients are .51 and .77. However, the

correspondence between the new indirect measures and the evaluation data is



Risk representations
20

even lower. Evaluation correlates .09 with the indirect similarity measure and

.12 with the indirect prediction measure. The respective monotone coefficients

are .20 and .26. Hence, the use of an indirect correlational procedure did not

reduce the discrepancy between evaluation and similarity or prediction.

On the other hand, the indirect measures of similarity and prediction are

better fit by factor analysis and multidimensional scaling than the direct meas-

ures. For example, the 2-dimensional KYST solution account for 79% of the

similarity variance and for 88% of the prediction variance. The corresponding

values for the 2-factors solutions are 82% and 94%. Furthermore, unlike the

direct measures that are better explained by trees than by dimensional models,

the indirect measures are fitted about equally well by trees, by factor analysis

and by multidimensional scaling. This observation suggests that the appropriate-

ness of the models depends both on the experimental task and on the method

used to define the proximity between objects.

DISCUSSION

The major findings of the present study concern the relation among (i) the

nature of the tasks performed by the subjects, (ii) the proximities induced by

these tasks and (iii) the formal representations constructed on the basis of these

data. We found that the comparative tasks (similarity judgments and condi-

tional predictions) tend to agree with each other, but the agreement between

these data and the dimensional evaluations is rather low. Furthermore, the com-
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parative tasks are better described in terms of discrete feature models (e.g.,

ADDTREE and EXTREE) whereas the evaluation data are better accounted for

by multidimensional scaling.

In order to interpret and evaluate a formal representation of some psycho-

logical domain, such as risk perception, two types of invariance should be exam-

ined: item invariance and task invariance. Item invariance refers to the degree

to which the representation is affected by changes in the selection of items from

the relevant domain. Task invariance refers to the degree to which the represen-

tation is influenced by the task. In this section we address these issues in turn

and discuss their implications to the study of risk perception.

The most extensive program of research on the perception of risk has been

conducted by Slovic, Fischhoff, Lichtenstein and their collaborators at Decision

Research in Eugene, Oregon (Fischhoff, et al. 1978, 1981; Slovic et al. 1980, 1981,

1983). These investigators introduced the dimensional evaluation task used in

the present study and constructed factor analytic solutions for several sets of

risks based on the ratings of lay people and experts. The risks used in these stu-

dies included primarily activities (e.g., smoking), substances (e.g.,, food coloring),

and technologies (e.g., X-rays). The authors found that two or three factors

accounted for about 80% of the variance in their studies. They have labeled the

first factor "unknown risk", the second factor "dread risk" and the third factor

"degree of exposure"(Slovic et al. 1983). The factor analytic representation was

remarkably stable: essentially the same factor structure was obtained for several
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groups of subjects and for different sets of scales and risks, of the same general

type.

The risks used in the Oregon studies differ from the present risks in

several respects. First, the former included activities (e.g., skiing, smoking, hunt-

ing) and products (e.g., food preservatives, pesticides, vaccinations) that generate

risk as a by-product and are not normally thought of as causes of death. Second,

the Oregon studies did not include diseases (e.g., stomach cancer, stroke) or

natural hazards (lightning, tornado, flood). Nevertheless, more than half of our

items were included in the Oregon studies, often in a more specific form. The

effect of the risk set can be observed in Table 3, which displays the correlations,

across risks, between the nine rating scales. The results of Fischhoff et al. (1978)

appear above the diagonals and the results of the present study appear below the

diagonal.

Insert Table 3 about here

Table 3 reveals substantial differences between the correlational structures.

The average absolute correlations is .51 in the Oregon study and only .30 in our

study. If we focus on the intercorrelations between the first five scales the respec-

tive averages are .73 and .22. Evidently, the replacement of technologies by

diseases and natural hazards reduces the dependence among the scales. Indeed, a

two-factor solution fits the Oregon data better than the present evaluation data



Table 3. Product-moment correlations between nine rating scales, across risks.

Data from Fischhoff et al. (1978) appear above the diagonal; evaluation

data from the present study appear below the diagonal.

Scale 1 2 3 4 5 6 7 8 9

1. Involuntary .54 .83 .75 .76 .65 .55 .55 .06

2. Effect Delayed .06 .78 .68 .42 .63 .16 .25 -.22

3. Not known to exposed .73 .04 .87 .63 .78 .35 .31 -.22

4. Not known to science .44 -.21 .32 .60 .83 .35 .46 -.14

5. Not Controllable .41 .14 .38 .52 .64 .63 .64 .24

6. New/Unfamiliar -.04 .31 .23 .29 .43 .46 .53 -.05

7. Catastrophic -.02 .29 -.25 .61 .46 .13 .60 .46

8. Dread -.06 .28 -.06 .42 .61 .57 .47 .63

9. Certainly Fatal -.24 .20 -.14 -.26 .26 .16 -. 18 .57
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and the resulting factor structures are quite different. Although much discussion

about the management and the regulation of risk has focused on technologies and

activities (Fischhoff et al. 1981), many of the risks that worry people in everyday

life are not usually conceived in this way. A comprehensive representation of the

perception of risk should encompass, besides technologies and activities, natural

hazards and diseases along with economic and psychological risks, such as ban-

kruptcy or divorce (Johnson & Tversky, 1983).

The evaluation of a formal representation of psychological data should

consider not only variations in stimuli (e.g., risks) but also variations in the

response or the task performed by the subject. As the present study show,

different tasks give rise to systematically different proximities between risks,

which in turn suggest different formal representations. It is instructive, therefore,

to examine the strengths and weaknesses of the tasks used on the present study

and explore their relevance to the study of risk perception.

The dimensional evaluation procedure has several advantages. First, it is

easy to use even with a large set of stimuli that require a prohibitive number of

paired comparisons. Slovic et al. (1983) have used this method with as many as

90 hazards. Second, it structures the subjects' task and focus their attention on

pertinent attributes of the stimuli, reducing the impact of irrelevant considera-

tions. The evaluation task, however, has its limitations: the scales are typically

confined to global dimensions that apply to all risks, hence one is likely to over-

look local features that apply only to a small subset of objects. The data
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reported in this article suggest certain aspects of risk perception are not captured

by dimensional evaluation. For example, Figure 3A shows that homicide and

war are perceived as similar although the correlation between their ratings is very

low.

Similarity judgments provide a more direct measure of the proximity

between risks in which the identification and the weighting of the relevant attri-

butes are performed by the subject. This is both a strength and a weakness:

the subject is not constrained by the scales selected by the investigator but the

judgments are susceptible to various effects that may or may not be relevant to

the study of risk. Which measure of proximity, if any, is relevant to risk analysis

depends on the purpose of the investigation. Slovic et.al. (1981) showed that lay

attitudes regarding risk policy are closely related to the dread factor derived from

the dimensional evaluation data. The higher the loading of an activity on the

dread factor, the more people want its risk reduced and the more they want to

see it regulated. On the other hand, we have found that conditional prediction

(which measures the perceived covariation between risks) correlates highly with

similarity but not with evaluation. This observation suggests that similarity may

play an important role in predicting people's responses to new risks or to new evi-

dence about risk. The public reaction to the Tylenol poisoning may be a case in

point. The incident appeared to provoke fears concerning over-the-counter drugs,

but not other products (e.g., foods) which could easily suffer from tampering.

And the similarity between nuclear power and nuclear warfare appears to fuel

-We
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much of the heated public debate about the acceptability of nuclear power

plants.

It is evident that any single task (e.g., prediction, evaluation, similarity)

and any formal representation (e.g., trees, spaces) derived from such data do not

adequately capture the complexity and richness of people's conception of risk.

Some of the limitations of specific tasks and models can be partly reduced by a

multi-task, multi-model approach in which a domain is explored by different

tasks that are analyzed by different models. The application of this approach to

the representation of risks suggests that the combination of psychometric

methods with cognitive task analysis offers a viable methodology for the study of

complex conceptual domains.
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Reference Notes

1. Corter, J., , Tversky, A. Extended similarity trees. Unpublished paper,

Stanford University, 1983.

2. Kruskal, J.B., Young, F.W., & Seery, J.B. How to use KYST, a very flexible

program to do multidimensional scaling and unfolding. Unpublished paper,

Bell Laboratories, 1073.
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Footnotes

1. This analysis has been suggested by George Furnas.
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Appendix B

Mean Ratings of 18 risks on nine Evaluation Scales

Not known Not Known New/ Effect Involun- Not Control- Certain- Dread Cata-
Risk to Science to those Unfamiliar Delayed tary lable ly Fatal strophic

exposed

Accidental
Falls 3.59 4.56 2.09 3.37 4.52 2.85 2.91 2.57 1.51

Airplane
Accidents 2.82 3.56 3.41 2.74 3.27 5.28 5.66 4.77 5.60

Electro-
cution 3.25 3.79 3.43 2.80 4.83 3.43 4.83 3.57 1.54

Fire 3.51 3.71 2.09 3.17 5.13 3.03 4.19 3.80 4.31

Flood 4.22 4.05 1.98 3.42 5.77 4.60 3.52 3.44 5.72

Heart
Disease 2.67 3.71 2.72 4.94 4.30 3.70 5.33 3.82 1.54

Homicide 4.06 4.82 2.43 2.62 5.55 4.88 6.44 5.00 2.43

Leukemia 2.94 4.56 3.26 5.17 6.13 5.72 5.44 4.44 1.56

Lightning 4.19 4.69 2.20 3.00 5.80 5.29 4.75 3.00 1.78

Lung
Cancer 2.71 3.30 3.06 5.25 3.75 3.82 5.72 4.47 1.78

Nuclear
Accident 5.19 4.28 5.49 4.20 4.66 5.82 5.41 6.02 5.96

Stomach
Cancer 3.03 4.33 3.40 5.34 4.72 4.54 4.94 4.29 1.59

Stroke 2.42 4.05 2.80 4.20 4.36 4.22 5.22. 4.35 1.56

Terrorism 5.70 4.38 4.40 4.00 5.75 5.64 4.19 5.32 4.28

Tornado 4.09 4.23 2.00 3.42 5.94 5.48 3.75 3.66 5.40

Toxic
Chemical
Spill 4.48 4.64 5.23 4.30 5.36 5.48 4.08 4.90 4.96

Traffic

Accidents 3.20 3.46 3.06 2.54 3.31 3.79 4.17 3.36 3.59

War 4.73 3.20 1.65 3.60 4.14 5.03 5.22 6.54 6.81
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Harvard University
Boston, MA 02163 Dr. Meredith P. Crawford

American Psychological Association
Dr. T. B. Sheridan Office of Educational Affairs
Department of Mechanical Engineering 1200 17th Street, N. W.
Massachusetts Institute of Technology Washington, D. C. 20036
Cambridge, MA 02139

Dr. Deborah Boehm-Davis
Dr. Arthur I. Siegel General Electric Company
Applied Psychological Services, Inc. Information Systems Programs
404 East Lancaster Street 1755 Jefferson Davis Highway
Wayne, PA 19087 Arlington, VA 22202

Dr. Paul Slovic Dr. Ward Edwards
Decision Research Director, Social Science Research
1201 Oak Street Institute
Eugene, OR 97401 University of Southern California

Los Angeles, CA 90007
Dr. Harry Snyder
Department of Industrial Engineering Dr. Robert Fox
Virginia Polytechnic Institute and Department of Psychology

State University Vanderbilt University
Blacksburg, VA 24061 Nashville, TN 37240
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Dr. Charles Gettys Dr. Babur M. Pulat
Department of Psychology Department of Industrial Engineering
University of Oklahoma North Carolina A&T State University
455 West Lindsey Greensboro, NC 27411
Norman, OK 73069

Dr. Lola Lopes
Dr. Kenneth Hammond Information Sciences Division
Institute of Behavioral Science Department of Psychology
University of Colorado University of Wisconsin
Boulder, CO 80309 Madison, WI 53706

Dr. James H. Howard, Jr. Dr. A. K. Bejczy
Department of Psychology Jet Propulsion Laboratory
Catholic University California Institute of Technology
Washington, D. C. 20064 Pasadena, CA 91125

Dr. William Howell Dr. Stanley N. Roscoe
Department of Psycholigy New Mexico State University
Rice University Box 5095
Houston, TX 77001 Las Cruces, NM 88003

Dr. Christopher Wickens Mr. Joseph G. Wohl
Department of Psychology Alphatech, Inc.
University of Illinois 3 New England Executive Park
Urbana, IL 61801 Burlington, MA 01803

Mr. Edward M. Connelly Dr. Marvin Cohen
Performance Measurement Decision Science Consortium
Associates, Inc. Suite 721

410 Pine Street, S. E. 7700 Leesburg Pike
Suite 300 Falls Church, VA 22043
Vienna, VA 22180

Dr. Wayne Zachary
Professor Michael Athans Analytics, Inc.
Room 35-406 2500 Maryland Road
Massachusetts Institute of Willow Grove, PA 19090

Technology
Cambridge, MA 02139 Dr. William R. Uttal

Institute for Social Research
Dr. Edward R. Jones University of Michigan
Chief, Human Factors Engineering Ann Arbor, MI 48109
McDonnell-Douglas Astronautics Co.
St. Louis Division Dr. William B. Rouse
Box 516 School of Industrial and Systems
St. Louis, MO 63166 Engineering

Georgia Institute of Technology
Atlanta, GA 30332
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Dr. Richard Pew Psychological Documents (3 copies)
Bolt Beranek & Newman, Inc. ATTN: Dr. J. G. Darley
50 Moulton Street N 565 Elliott Hall
Cambridge, MA 02238 University of Minnesota

Minneapolis, MN 55455
Dr. Hillel Einhorn
Graduate School of Business
University of Chicago
1101 E. 58th Street
Chicago, IL 60637

Dr. Douglas Towne
University of Southern California
Behavioral Technology Laboratory
3716 S. Hope Street
Los Angeles, CA 90007

Dr. David J. Getty
Bolt Beranek & Newman, Inc.
50 Moulton street
Cambridge, MA 02238

Dr. John Payne
Graduate School of Business
Administration

Duke University
Durham, NC 27706

Dr. Baruch Fischhoff
Decision Research
1201 Oak Street
Eugene, OR 97401

Dr. Andrew P. Sage
School of Engineering and
Applied Science

University of Virginia
Charlottesville, VA 22901

Denise Benel
Essex Corporation
333 N. Fairfax Street
Alexandria, VA 22314
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